一篇文章彻底搞定Linux信号!

1.信号是什么?

信号其实就是一个软件中断。

例:

  1. 输入命令,在 下启动一个前台进程。
  2. 用户按下 Ctrl-C,键盘输入产生一个硬件中断。
  3. 如果 当前正在执行这个进程的代码,则该进程的用户空间代码暂停执行, CPU 从用户态切换到态处理硬件中断。
  4. 终端驱动将 Ctrl-C 解释成一个 SIGINT 信号,记在该进程的 PCB 中(也可以说发送了一个 SIGINT 信号给该进程)。
  5. 当某个时刻要从内核返回到该进程的用户空间代码继续执行之前,首先处理 PCB 中记录的信号,发现有一个 SIGINT 信号待处理,而这个信号的默认处理动作是终止进程,所以直接终止进程而不再返回它的用户空间代码执行。

❝在这个例子中,由 ctrl+c 产生的硬件中断就是一个信号。Ctrl+C 产生的信号只能发送给前台进程,命令后加 & 就可放到后台运行。Shell 可同时运行一个前台进程和任意多个后台进程,只有前台进程才能接受到像 CTRL+C 这种控制键产生的信号。

2.信号的种类

使用命令查看:

-l

非可靠信号:1~31 号信号,信号可能会丢失 可靠信号:34~64 号信号,信号不可能丢失

SIGHUP:1 号信号,Hangup detected on controlling or death of controlling process(在控制终端上挂起信号,或让进程结束),ation:term

SIGINT:2 号信号,Interrupt from keyboard(键盘输入中断,「ctrl + c」),action:term

SIGQUIT:3 号信号,Quit from keyboard(键盘输入退出「ctrl+ |」),action:core,产生 core dump

SIGABRT:6 号信号,Abort signal from abort(3)(非正常终止,「double free」),action:core

SIGKILL:9 号信号,Kill signal(杀死进程信号),action:term,该信号不能被阻塞、忽略、自定义处理

SIGSEGV:11 号信号,Invalid memory reference(无效的内存引用,解引用空指针、内存越界访问),action:core

SIGPIPE:13 号信号,Broken pipe: write to pipe with no readers(管道中止: 写入无人读取的管道,会导致管道破裂),action:term

SIGCHLD:17 号信号,Child stopped or terminated(子进程发送给父进程的信号,但该信号为忽略处理的)

SIGSTOP:19 号信号,Stop process(停止进程),action:stop

SIGTSTP:20 号信号,Stop typed at terminal(终端上发出的停止信号,「ctrl + z」),action:stop

具体的信号采取的动作和详细信息可查看:「man 7 signal」

3.信号的产生

3.1 硬件产生

硬件产生即通过终端按键产生的信号:

  1. ctrl + c:SIGINT(2),发送给前台进程,& 进程放到后台运行,fg 把刚刚放到后台的进程,再放到前台来运行
  2. ctrl + z:SIGTSTP(20),一般不用,除非有特定场景
  3. ctrl + | :SIGQUIT(3),产生 core dump 文件

产生 core dump 文件的条件:

当前OS一定不要限制coredump文件的大小,ulimit-a
磁盘空间要足够
如何产生:
3.1解引用空指针,收到11号信号,产生coredump文件
3.2内存访问越界,程序一旦崩溃,就会收到11号信号,也就会产生coredump文件
3.3 double free,收到6号信号,并产生core dump。
3.4free(NULL),不会崩溃

3.2 软件产生

软件产生即调用系统函数向进程发信号

  1. kill 函数
  1. kill 命令:kill -[信号] pid,
  2. abort:void abort(void);,收到 6 号信号,谁调用该函数,谁就收到信号
  3. alarm:unsigned int alarm(unsigned int seconds);,收到 14 号信号,告诉内核在 seconds 秒后给进程发送 SIGALRM 信号,该信号默认处理动作为终止当前进程。

4.信号的注册

信号注册又分为可靠信号的注册和非可靠信号的注册。信号注册实际上是一个位图和一个 sigqueue 队列。一篇文章彻底搞定Linux信号!

4.1 非可靠信号的注册

当进程收到非可靠信号时:

  1. 将非可靠信号对应的比特位置为 1
  2. 添加 sigqueue 节点到 sigqueue 队列当中,但是,在添加 sigqueue 节点的时候,队列当中已然有了该信号的 sigqueue 节点,则不添加

4.2 可靠信号的注册

当进程所受到可靠信号时:

❝在 sig 位图中更改信号对应的比特位为 1 不论之前 sigqueue 队列中是否存在该信号的 sigqueue 节点,都再次添加 sigqueue 节点到 sigqueue 队列当中去

5.信号的注销

5.1 非可靠信号的注销

信号对应的比特位从 1 置为 0 将该信号的 sigqueue 节点从 sigqueue 队列当中进行出队操作

5.2 可靠信号的注销

❝将该信号的 sigqueue 节点从 sigqueue 队列当中进行出队操作 需要判断 sigqueue 队列当中是否还有相同的 sigqueue 节点:①没有了:信号比特位从 1 置为 0 ②还有:不会更改 sig 位图中的比特位

6.信号阻塞

6.1 信号是怎样阻塞的?

❝信号的阻塞,并不会干扰信号的注册。信号能注册,但不能被立即处理, 将 block 位图中对应的信号比特位置为 1,表示阻塞该信号 进程收到该信号,还是一如既往的注册 当进程进入到内核空间,准备返回用户空间的时候,调用 do_signal 函数,就不会立即去处理该信号了 当该信号不被阻塞后,就可以进行处理了

6.2sigprocmask

函数原型:int sigprocmask(int how, const sigset_t *set, sigset_t *oldset); 解释:

how,该做什么样的操作
SIG_BLOCK:设置信号为阻塞
SIG_UNBLOCK:解除信号阻塞
SIG_SETMASK:替换阻塞位图
set:用来设置阻塞位图
SIG_BLOCK:设置某个信号为阻塞,block(new)= block(old)|set
SIG_UNBLOCK:解除某个信号阻塞,block(new)= block(old)&(~set)
SIG_SETMASK:替换阻塞位图,block(new)=set
oldset:原来的阻塞位图

例:下述例子,信号全部被阻塞,采用 kill -9,将该进程结束掉

结果:此时发送信号是不会有作用的,采用 kill -9 强杀掉

7.信号未决

7.1 未决概念

实际执行信号的处理动作称为信号递达(Delivery),信号从产生到递达之间的状态,称为信号未决(Pending)。进程可以选择阻塞(Block)某个信号。被阻塞的信号产生时将保持在未决状态,直到进程解除对此信号的阻塞,才执行递达的动作。注意,阻塞和忽略是不同的,只要信号被阻塞就不会递达,而忽略是、在递达之后可选的一种处理动作。

7.2 sigpending

函数原型:int sigpending(sigset_t *set); 读取当前进程的未决信号集,通过 set 参数传出。调用成功返回 0,出错返回 – 1.

例:

结果:

8.信号的处理方式

每个信号都有两个标志位分别表示阻塞和未决,还有一个函数指针表示处理动作。

在上述例子中:

  1. SIGHUP 信号未阻塞也未产生过,当它递达时执行默认处理动作。
  2. SIGINT 信号产生过,但正在被阻塞,所以暂时不能递达。虽然它的处理动作是忽略,但在没有解除阻塞之前不能忽略这个信号,因为进程仍有机会改变处理动作之后再解除阻塞。
  3. SIGQUIT 信号未产生过,一旦产生 SIGQUIT 信号将被阻塞,它的处理动作是用户自定义函数 sighandler。

8.1signal 函数

该函数可以更改信号的处理动作。

typedefvoid(*sighandler_t)(int);
sighandler_tsignal(intsignum,sighandler_thandler);
参数解释:

signum:更改的信号值
handler:函数指针,要更改的动作是什么

实际上,该函数内部也调用了 sigaction 函数。

8.2sigaction 函数

读取和修改与指定信号相关联的处理动作。

intsigaction(intsignum,conststructsigaction*act,structsigaction*oldact);

参数解释:

signum:待更改的信号值

struct sigaction 结构体:

void(*sa_handler)(int);//函数指针,保存了内核对信号的处理方式
void(*sa_sigaction)(int,siginfo_t*,void*);//
sigset_tsa_mask;//保存的是当进程在处理信号的时候,收到的信号
intsa_flags;//SA_SIGINFO,OS在处理信号的时候,调用的就是sa_sigaction函数指针当中
//保存的值0,在处理信号的时候,调用sa_handler保存的函数
void(*sa_restorer)(void);

例:

结果:

8.3 自定义信号处理的

  1. 「task_struct」结构体中有一个「struct sighand_struct」结构体。
  2. 「struct sighand_struct」结构体有一个「struct k_sigaction action[_NSIG]」结构体
  3. 该数组中,其中的「_sighandler_t sa_handler」保存的是信号的处理方式,通过改变其指向,可以实现我们对自定义信号的处理。

9.信号的捕捉

9.1 信号捕捉的条件

❝如果信号的处理动作是用户自定义函数,在信号递达时就调用这个函数,这就称为信号捕捉。

9.2 信号捕捉流程

内核态返回用户态会调用 do_signal 函数,两种情况:

  1. 无信号:sys_return 函数,返回用户态
  2. 有信号:先处理信号,信号返回,再调用 do_signal 函数 例:
  3. 程序注册了 SIGQUIT 信号的处理函数 sighandler。
  4. 当前正在执行 main 函数,这时发生中断或异常切换到内核态。
  5. 在中断处理完毕后要返回用户态的 main 函数之前检查到有信号 SIGQUIT 递达。
  6. 内核决定返回用户态后不是恢复 main 函数的上下文继续执行,而是执行 sighandler 函数, sighandler 和 main 函数使用不同的堆栈空间,它们之间不存在调用和被调用的关系,是两个独立的控制流程。
  7. sighandler 函数返回后自动执行特殊的系统调用 sigreturn 再次进入内核态。
  8. 如果没有新的信号要递达,这次再返回用户态就是恢复 main 函数的上下文继续执行了。

10.常用信号集操作函数

intsigemptyset(sigset_t*set);://将比特位图全置为0

intsigfillset(sigset_t*set);//将比特位图全置为1

intsigaddset(sigset_t*set,intsignum);//将该set位图,多少号信号置为1

intsigdelset(sigset_t*set,intsignum);//将该set位图,多少号信号置为0

intsigismember(constsigset_t*set,intsignum);//信号signum是否是set位图中的信号

11.SIGCHLD 信号


该信号是子进程在结束是发送给父进程的信号,但是该信号的处理方式是默认处理的。父进程对子进程发送过来的 SIGCHLD 信号进行了忽略处理,就会导致子进程成为僵尸进程。

可以自定义该信号的处理方式:

指令查看后台:「ps aux | grep ./fork」

链接:https://blog.csdn.net/w903414/article/details/109802539

(版权归原作者所有,侵删)

给TA打赏
共{{data.count}}人
人已打赏
运维笔记

Go 语言源码级调试器 Delve

2023-10-10 18:31:45

运维笔记

运维人必知必会的find命令7种用法!

2023-10-10 18:31:47

0 条回复 A文章作者 M管理员
    暂无讨论,说说你的看法吧
个人中心
购物车
优惠劵
今日签到
有新私信 私信列表
搜索